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Abstract  An  exactly soluble mode l  field theory  ts proposed  to describe physical  particles on a unified 
basis By s tar t ing f rom a d~rect ln te racuon  of  Fermt  type for particles with vamsh lng  bare  mass ,  
the  s imul taneous  increase o f  bo th  physical  mass  and  b m d m g  effects, caused by the  lnteracUon, 
is made  exphct t  Convergence  o f  the  local theory  is assured by a resonance  effect The  exact  
so lu tmn  for the  compound-par t ic le  is conf ronted  with those  obta ined  f rom var ious  approxt-  
m a h o n  schemes,  vtz one-t ime and  many- t ime  T a m m - D a n c o f f  and  Bethe-Salpeter e q u a h o n s  
The  coupl ing o f  the  compound-par txcle  to tts const i tuents  is de te rmmed 

1. Introduction 

The self-interaction of a single field corresponding to bare particles with vanishing 
mass should furmsh these particles with non-vamshmg physical mass and at the same 
time give rise to binding effects between the masswe particles, thus leading to the 
formation of  compound-particles While a rigorous formulahon of this idea under- 
lying several unified elementary particle theories ~) is stall missing, the fair agreement 
of  some of  the calculated compound-parUcle masses w~th experimental data points 
to the desirability by starting from massless particles, of making exphclt the simul- 
taneous increase of  both parUcles mass and bmdmg effects and of analysing the mean- 
lng and efficiency of various approxlmaUon schemes for the description of these 
effects in a rigorous way these problems can only be discussed at present m terms 
of models which are simple enough to be soluble exactly but stdl possess part  of the 
general properties and structures the reahstlc theories should contain A model field 
theory of this type is proposed in the following 

In a relatwlstlc theory of a single field A(x, t), describing parUcles labelled A, 
coupled with itself through a direct Fermi mteracUon A+AA+A, this interaction can 

t W o r k  suppor ted  by the  Deutsche  Forschungsgememschaf t ,  the  G e r m a n  Federal  Mmts t ry  for 
Sctenttfic Research,  the  Alexander  yon  H u m b o l d t  Founda t ion ,  the  In te rna t tona l  A tomic  Energy 
Agency  and  the Nat tona l  Science F o u n d a U o n  of  the  U S A  

tt Nat tona l  Science F o u n d a h o n  post -doctora l  fellow, on leave f rom the Umvers t ty  o f  S Paulo,  
Brazil 
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be decomposed schematically into a binding term a + a + aa describing the binding 

or scattering of two A particles (fig 1) a dressing term a + a + a + a + a + a a a  which 
gives rise to self-mass (fig 2) and a vacmtm term a + a + a + a + + a a a a  responsible for 
vacuum fluctuation processes Here, a + and a are the creation and annihilation 

operators for a bare `4 particle. In what follows we shall not consider the vacuum 

effects In spite of thls simplification no exact treatment of  the remaining terms is 
possible since one cannot account for a complete iteration of the dressing term t 
The essential simplification that makes the model exactly soluble consists of replacing 

the above dressing term by the expression b + b + b + a + a  + bbb  (fig 3) Here b + and b 
are creation and annihilation operators of particles labelled B,  described 2) by a new 
auxlhary field B ( x ,  t) ,  which later will be eliminated Obviously, in virtue of the 

missing symmetry between creation and annihilation operators in the interaction 
the model becomes a non-relativistic one which, however, can be solved exactly 

,,[, 

Fig 1 Binding and. scattering Fig 2 Dressing graph Fig 3 Dressing of A particles 
graph for A particles for A particles by B particles 

Suppose now the bare A particles have an arbitrarily small bare mass so that their 
bare rest-energy - in contrast with their kinetic energy - can be put equal to zero 

The effect of the B particles is now just to dress the bare.4 particles, thereby furnishing 
the latter with a positive, finite physical rest-energy, or physical mass (sect 2) In a 
non-relativistic theory there is no reason to identify inertial mass m with rest-mass m o 
in the energy function e(k) = ( k 2 / 2 m ) + t o o  of the particle By dressing or mass for- 

matlon we mean, then, the increase of the rest-mass of the pamcle from mo = 0 to 
m o >  0, the inertial mass remaining unaltered The B field is now to be chosen in 
such a way that this dressing process is the only effect the B particles give rise to. 
The B particles, then, do not manifest themselves otherwise, that ~s to say, there will 
be no scattering or binding of  A particles through intermediate B particles, and the 
B particles are finally eliminated by making their bare mass infinitely large 

The model thus obtained turns out to be local and finite We shall show in fact 
how a field theory with Fermi interaction can be made finite in the local hmlt through 
a resonance effect without the necessity of  introducing ghost states The bound state 
(meson) formed by two massive .4 particles (nucleons) will be calculated exactly and 
will be shown to be caused entirely by the primary self-interaction of the A particles, 
i e ,  by the term a + a + aa, without participation of intermediate B particles which 

only turn the neutrino-like bare A particles into massive ones (sect 3) 
In sect. 4 the exact solutions of the model are confronted with those obtained by 

various approximation schemes Perturbation theory gives the exact result for the 

t An attempt an this direction has been made by one of us 10) 
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single-particle problem in spite of the singular structure Sv a of  the self-energy of the 

A particle The bound state problem is treated in the one-time and many-time Tamm- 
Dancoff approxamatlon The absence of any relatwe-tlme correlation between the 
two constxtuents of the bound state m the n = 2 one-time approxxmatlon prevents 
the appearance of virtual clouds around both of  them so that we are left with a bound 

state of two massless A particles of negative energy On the other hand, the n = 2 
two-time approximation gives a posture-energy solution, but not the exact one, 

however, since the relative-time correlation in this case accounts for the dressing of 

only one of  the constituents, the other remaining massless If  we proceed to the n = 4 
approximation, flus missing energy will be supphed, thus leading to the exact so- 
lution. The Bethe-Salpeter equatxon corresponding to the ladder diagram likewise 

gwes the exact result since here the relative-time correlation enters m a symmetrical 
way so that both particles remain dressed It is obwous from ttus, that the one-time 

Tamm-Dancoff method is generally less efficient than the other methods. 
In sect. 5 the couphng of  the compound particle to its constituents ~s determined 

from the bound state propagator which is essentially gwen by the inverse of the 
Bethe-Salpeter equation In a forthcoming paper we shall demonstrate that the Fermi 
theory can be considered as the llmmng case of a Yukawa theory with vanishing 

Z 3 renormallzatlon Although being non-relativistic, the model may be viewed as a 

truncated form of a relatwlStlC theory 

2. The One-Partide Problem 

The system to be considered is defined by the Hamlltonlan 

H = H o + H 1 ,  

with 

(1) 

fE 1 H o = dx  ~ m V A + V A - M B + B  ' (2) 

where m and M are the kinetic and bare masses of A and B pamcles, respectively 
The rest-energy of the bare A particle (a term - m A  + A)  has been put equal to zero 

m accordance wath what has just been said and we have neglected the kinetic part 
( 1 / 2 M ) V B  + V B  of the B parrlcle by reqmrmg M ~ oo The parameters 21 < 0 and 
2 2 are real coupling constants and we include tacitly two auxiliary cutoffs K 1 and Kz 

in the terms A + A + A A  and B + B + B + A + A + B B B ,  respectively, making finally 
Kl ~ ~ ,  K2 ~ oo W e  set h = c = 1 

Both A and B particles are conveniently quant~zed according to Bose statistics 
For A we have 

[A(x,  t), A + ( x  ', t)] = 6 ( x - x ' ) ,  [a(k), a+(k')]  = 6 ( k - k ' ) ,  (4) 
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while for B we take an indefinite metric which, however, has no relation with the 
convergence o f  the theory but  is due to the non-relativistic character o f  the model.  
In  a theory  in which physical and bare vacuum coincide, the physical energy o f  a 

particle ~s always smaller than or  equal to the bare energy ff quantizat lon is performed 

with a posltwe definite metric Indeed, putt ing a + (k)10) = c[1, k ) + ~ c A b , ,  where 
the qS, represent scattering states, whose energies E,, for stablhty reasons, must  be 
larger than the energy of  the state o f  one pamcle ,  we find 

(OlaHa + IO) = (O]aHo a+ IO) + (O[aHx a+ IO) = (O[aHo a+ IO) = Eb~r~, 

where use has been made of  the fact that  (OlaHla+[O) = 0, if the Interaction is 
written in terms of  normal  products  On the other hand, expanding m terms of  elgen- 
states o f  the total HamlltonIan,  we obtain (OlaHa +lO) = c2E+~e2E, Subtracting 

both  equahtles gives c2(E-Eu,re)+~c2(E,-Ebar~) = 0, which implies E < Eb.r, 
This ~mplles a quantlzat lon with indefinite metric if we insist on having a positive 

physical mass for the A particle We observe that  the theory as mvarmnt  under  the 
t ransformation A ~ Ae '~, B ~ Be +'~, which entails that  

n = na +½nb = f dka +(k)a(k) + ½ f dk b +(k)b(k) (5) 

is a good quan tum number  and we have separate sectors 
The commuta t ion  relations for B particles now read 

[B(x, t)B+(x ', t)] = - 6 ( x - x ' ) ,  [b(k), b+(k)] = - 6 ( k - k ' )  (6) 

In  momen tum space, the Hamdton lan  1s given by 

H = f d k I ~ m a + ( k ) a ( k j - M b + ( k ) b ( k )  1 

+ 2 1 f d k l  

+a2fdkl 
dk4 a + (kl)a + (k2)a + (ka)a + (k4)6(k, + k2 - k3 - k,,) 

dkg[b+(k~)b+(k2)b+(ka)a(k4)+h c ]6(k4-k  x - k  2 - k 3 )  , (7) 

where k 2 < K 2 in the term with 21 and k 2 =< K2 z I n  the term with 22 and K s ~ oo 

at the end of  all calculations 
Let 10) be the bare vacuum which here coincides with the physical one H I 0 )  = 0. 

The state o f  a physical A pamcle  with momen tum k can be represented by 

la, k )  = a+(k)[0)  

f + dk 1 dkafo(kl,  k2, ka)6(k- ~. k,)b+(kl)b+(k2)b+(k3)lO). (8) 
1 
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In  f ront  of  [a, k )  we have dropped a normalizat ion factor  No, which, as is easily seen, 
tends to unity if, as we require, M tends to infinity, in which case no scattering o f  
B partxcles occurs, since then E < 3M Insert ing (8) into the mgenvalue equation 

nla, k) = Ela, k), 

we obtain the two equations 
3 

(E--3M)fo(k,,  k2, k3) = 22 1~ O(K 2 -k~), 
1 

f 3 E -  1 k2 = _ 3 , 2  2 dk 1 dk3fo(kl, k2, ka)6(k- ~_. k,) I~ O(K22-k2), (9) 
2m 1 1 

where the cutoff  has exphc~tly been introduced through the step function O F r o m  

eq (9) it follows that for E < 3M, 

where 

E -  k2/2m -- 3 '2  2 G(k)/(3M- E), (10) 

3 3 

G(k) = dk 1 dk36(k-  ~. k,) l-[ O(K2-k~) = ~ 2 5  rz6 g 2 - - 0 ( K 2  , t  k 2) (11) 
1 1 

Hence, 

E -  k2/2m = [5K2 6 2z z ~2 _ o(X~, k z) ] / ( 3 M - E )  (12) 

Let now K2 ~ co, M ~ co in such a way that 

hm [5K62r~Z/3M] = c~ > 0, (13) 
K2-'* ~ j  M'-* oo 

where e is fimte, then the energy of  the physical A particle becomes 

E = - - I  k 2 + m o ,  mo = e 2 z  z > 0 ,  (14) 
2m 

with the positive rest-energy m 0 The originally massless bare A particle gains this 
mass through its interaction with virtual B particles We observe that  the second 

F i g  4 F i g  5 S c a t t e r i n g  o r  b i n d i n g  g r a p h  
for dressed A particles 

I '  
Self-energy part of A particles 

solution a) o f  eq (12) when M < co (ghost) disappears in the hmlt  M--* oo Ob- 
viously there is no scattering o f  3 B particles (cf the appendix) In the limit M --* co 
we have f ~ - 2 z / 3 M  Hence, in this limit la, k )  is a correctly normalized state, 
(a, k[a, k') = 6(k-k ' )[1-moo(1/M)] ~ 6(k-k ' ) ,  and [a, k) --* a+(k)[O) m the 
sense o f  strong convergence 
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3. Bound-State Problem 

For the bound state 12a) of two physical A particles, satisfying the elgenvalue 
equation 

HlZa) = ElZa), 

we make in the centre-of-mass system the ansatz 

12a) = fdkf(k)a+(k)a+(- k)10> 

3 3 

+ dkdkldk2dkag(k, kt, k2, ka)cS(k- Z k,) II  b+(k,)a+(-k)lO) 
1 1 

f 6 + d k l "  dk6r(kl . . . .  k6)6(Z k,)b+(kl) "'" b+(k6)lO), (15) 
1 

which gwes rise to the following system of equations 

f 
(E-k2/m)f(k) = 22x dkf(k)-3T22 dk,9(k, k 1, k 2 , k3)fi(k- E k,), (16a) 

1 

3 

[(E-3M-k2/2m)o(k, kl, k2, k3)-Z22f(k)]6(k- ~ k,) 
1 

f o 3 = -5 '22  dk4dksdk6r(kl,. , k6)6(~ k,)~(k- 2 k,), (16b) 
1 1 

6 3 6 

(E-3 tM)r(kl, , k6)t~( 2 k,) = 42[9( Z k,, k 1 , k2, k3)6( 2 k,)]s (16c) 
1 1 1 

where the index s means symmetrlzatlon m all variables Substitution of (16c) into 
(16b) gwes 

3 3 3 

(E--( ~ k~)2/2m-3M)9( ~ k,, kl, k2, k3)-222 f ( ~ k,) 
1 1 1 

fO 6 - -  -5,B~/(~- 3,M)] dk£g( Z k,, k~, k2, k3)~( Z k,)]s. 
1 1 

Takmg now the hmlts K2 ~ 0% M ~ oo we arrwe at 

3 3 

9( Z k,, k l ,  k2, k3) = --222f(  Z k,)/3MI+2~SK6/18M+°(M-1) , 
1 1 

where 

S = 

(17)  

3 • 6 
-- 5n2g( ~ k,, k l ,  k2, k 3 ) -  K2 6 J4i j  dk,[g( E k,, k2, k3, k,)3( E k,) + . .], 

1 2 1 
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3 

ISI ~ 5 '1o(~ k,, kl ,  kz, k3)l~r~ 2 
I 

Then, from eqs. (17) and (13) we have 

3 3 

g( • k,, kl ,  k 2, k3) = - 2 2 1 f (  Z k,)/3M +o(1/M), (18) 
1 1 

and substituting this into eq (15) we find the elgenvalue equation 

(E-kZ/m)f(k)  = (42Z/M)G(k)f(k)+ ZXl f dk'f(k'), 

which in virtue of eqs. (11) and (13) slmpllfies to 

( E -  (k2/m)- 2mo)f(k) = 22x f dk~f(k') (19) 

From this equation we find for the energy E of the bound state the expression 

f~ ldlkl /U(E- = 1/8rdq, k2/m ~ 2 m 0 ~  ~ I (20) 

or 

m~(2mo-- E) ~ arctg [K1/(2mm o - E m o )  ~] = mK1 + 1/8x2t (21) 

Let us now perform the hmitlng processes K x --* oo and 21 ~ 0 m such a way that 

hm [inK 1 + 1/8x21] = fl > 0, (22) 
KI --~ oo, ,~ 1 --~ 0 

where/3 is fimte Then the energy of the compound-pamcle 18 just gwen by 

E = 2mo-B,  (23) 

with the bmdlng  energy 

B = 4f12/m3/r 2 > 0, 

E is posltwe if fl is chosen suffictently small. 
It Js easily seen that the solutmns 

E = 2too--B, 

f (k )  = (E-- k2 /m-  2mo)- t, 

3 3 

9( Z k,, k l ,  k2, k3) = 221 f (  Z k,)/3M, # ~ O, 
1 1 

(24) 

r ~ 0  

(25) 

for M ~  oo 
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are m fact the exact ones, the solution being unique if first the hmlt (13) and then the 

limit (22) are performed Eq (25) implies that r ~ 0 and g --, 0 as M ~ oo Hence, 
no B particles will participate in the bound state They merely furnish the massless 
A particles with rest-energy mo > 0 The binding forces are entirely caused by the 

primary self-interaction of the A particles This self-Interaction 21SdxA + A + A A  of  
the A particles is different from zero in spite of  the hmltlng procedure (22), 21 ~ 0, 

since at the same time the cutoff K 1 involved m S d x A + A + A A  tends to Infinity so 
that, roughly speaking, the divergence of  the product A +A + A A  of field operators 
is compensated by the vamshlng of the coupling constant 21 

A simple physical argument shows the necessity of taking 21 ~ 0 if K 1 -~ oo (eq. 
(22)) to obtain finite results in the local theory (cf,  also ref 4)) We first note that 
performing the limit K 1 ~ oo without passing simultaneously to 21 ~ 0 would lead 

to a divergent theory These divergencies, however, do not manifest themselves in 
terms ot lnfimte values of observable quantities as perturbation theory and the usual 

renormahzatlon formalism would seem to indicate Instead, they just give rise to a 
free theory, e g ,  to vamshmg cross sections, in accordance with the point of view 

maintained by Landau and others s) on the significance of  a divergent theory We 
shall show this in a forthcoming paper in connection with the Za = 0 hmlt of a 

Yukawa theory 
The vanishing of the cross section can be understood by interpreting the inter- 

action between A particles as being due to a potential of  range 1/K 1 and strength 
221 (2~z)3K 3 (cf,  eq (38)) On account of the small range of the potential (1/K~ ~ O) 

one expects already classiclally a total cross section of  the order 1/K 2 ~ 0 At first 

sight one might surmise that this result could be avoided by means of  an increase of  
the depth of the potential, 1 e ,  by t~klng ]211 ~ oo This, however, would not change 
the classical argument since classically the total cross section depends only on the 
dimension of the potential and not on its depth To obtain a non-zero result we must 

use an essentially quintal property, VlZ, the possibility of resonances inside the po- 
tential To this end let us introduce a propagation vector t/in the interior of the po- 

tential 

V = 221 (2re) 3 ~(x) = 221 (27r) 3 K~ (26) 

(cf eq 138)), VlZ 

q = ( 2 m ( E -  V)) ~ = (2rn(E- 121(2zr)JKt3) ÷ (27) 

The potential bas the range l/K1. Requiring that precisely one wave length be con- 
tained in the potential, 1 e ,  that 2n/tl --* 1/KI, we find immediately that 2nK1/tl ~ 1 

together with (27) implies that 8n21rnK 1 - - * -  1 The way in which the limit 
8n2 l inK 1 ~ - 1  is reached is precisely characterized by our constant fl in (22), 
fl = llm[mK 1 + 1/8n21] Thus we see that the non-zero results obtained in the limit 
(22) are due to a near-to-resonance-effect, fl being a measure for the proximity to 
resonance For fl ~ 0 we have a true resonance, of course We might mention that 
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it is this type of effect wh,ch makes a field theory with Z 1 = 0 different from a free 

one a) 
The limit (13) shows that the B particles do not manifest themselves in any real 

process since an energy E __> 3M would be necessary for this to happen and M - o  o9 

Therefore, considering only processes of finite energy, the Hamlltoman H (eq (7)) 
is equivalent - with respect to binding and scattering effects - to the Hamiltonlan 

H' = f dk (2~ k2+mo) a+(k)a(k ) 

fO +2 i  dk,3(kl +k2-k3-k4)a +(kl)a+(kz)a(k3)gt(k,~) (28) 

in which the effect of  the B particles is concentrated in the mass value mo The Hamll- 
tonmn H '  is just the Hamlltonlan of a direct Fermi interaction In contrast with 

conventional theories, however, m o is not an arbitrary parameter but a well-deter- 

minded quantity Similarly, the coupling of the compound-particle to ItS constituents 
turns out to be well-determined (cf sect 5) 

The bound state 12a) for the new Hamdtonian H '  is now given by 

12a) = Nfdkf(k)a+(k)a+(-k)lO), (29) 

where the wave function normahzatlon is 

N =  2 dk k 2 (30) 

The elgenvalue E of the bound state 

H ' [2a)  = El2a) 

coincides with eq (23) and f(k) with the quantity given by eq (25) Similarly, the 
one-particle solution pertaining to H '  coincides with that pertaining to H, [a, k) 
= a+(k)]0) The equivalence between H and H' persists also an higher sectors since 
the hmlt M ---, ~ prevents the intervention of B particles in any real process of finite 

energy On the other hand, virtual B particles are always related to a term of the type 
1/(E-3M) (cf eq (10)) Therefore, the only processes contributing with a non-zero 
result are those in which the largest number of intermediate integrations compensates 
the term 1/M an 1/(E-3M) by the ultraviolet factor K 6 These processes correspond 
to the emission and absorption of 3 B particles by the same A particle and thus 
contribute only to the self-energy of the latter Hence, no scattering or binding of 
A particles through intermediate B particles can occur The argument is clearly in- 
dependent of the sector considered (for processes of finite energy) 

It would of course have been a trivial matter to write down the Fermi interaction 
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H '  between the massive particles f rom the outset But this would have given no 
indication of the origin of  the mass mo The vital point is that m o has been generated 
by the lnteractlon which simultaneously binds the particles together while they are 
getting massive 

4. Approximation Schemes 

We now confront the exact solutions with those furmshed by vartous approximation 
schemes The following notation will be used F = ( 2 r 0 - 4 j ' d 4 p e x p 0 p  - x) is the 

Fourier operator, x = x l - -x2 ,  t = t l - - t2 ,  d4p = dpdpo, x = (x~), p x = x "  p - t p o ,  
O the step function. 

The exact B particle propagator is the free one since there is no dressing of  B 
particles through A particles Hence, 

S~(x,  t) = ( O I Z ( B ( x l ,  t t ) B + ( x 2 ,  t2))10) = 6 ( x ) O ( t ) e x p  ( - , M t ) ,  (31a) 

S~(x,  t) = FS~(p ,  Po) = F [ z / ( p o - M  + te)]. (31b) 

The exact A particle propagator m the limit M ~ m, K2 ~ m is given by 

S~(x,  t) = ( o t r ( a ( x l ,  q ) a + ( x 2 ,  t2))10), 

S~(x,  t) = FS~(p ,  Po) = F[ t / (po  - p2/2rn - rno - re)] (32) 

There are clearly no scattering states of  B parttcles contributing (cf. the appendix). 
From eq (1) we have the following equation of motion for the A field 

We note that 

tdA/d t  = - A A / 2 m  + 2(270321 A + A A  + (2//7) 3 2 z B B B .  (33) 

(OITA+ A+]O) = (O[TB+ B+[O)  = (OITA+B]O)  = 0, (34) 

since n a + k n  b = const. (cf ,  eq (5)) 

4 1 PERTURBATION APPROACH 

The self-energy of a single A particle is given by 

Z (x, t) = t3'&~(2x)6ES~(x, 0] 3 (35) 

Passing to momentum space and taking account of  the cutoff through the insertion 
of  I - I ~ O ( K ~ - p ~ )  into the integral, we find 

~. (Pv) = - 3 '22 G(p)/(po - 3M) 

Taking the limit (13) gives Y'.(Pv) = Z(Po)  = mo and thus we find again the A 
particle propagator S ~ ( p v ) =  t / ( p o - - p 2 / m - X )  with X = m o  
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4 2 O N E - T I M E  T A M M - D A N C O F F  A P P R O X I M A T I O N  

The one-time Tamm-Dancloff  amphtude 6) for the bound state [2@ is given by 

q~(xl,xz, t) = (OIT(A(x l ,  t)A(x 2, t))12a), 

the T product for equal times being defined by the average for t = ___ e, e ~ 0 
Invarlance with respect to time translation implies that 

~P(Xl, x2, t) = ¢P(Xi, x2) exp ( - t E t ) ,  

where E is the energy of the bound state. F rom the equation of motion it follows that 
= x2)) 

E~ = -- Ax q~/2m- A2qg/2m 
+2(2rc) a ;tl(0 IT A + (xx, t )A(x l ,  t )A(x~, t) " A(x2,  t)12a) 

+ 2(2n)3 21(OlTA(xl ,  t) A+(x2, t )A(x2,  t)A(x2,  t) "12@ 

+ (2n) 3 22(OIT(B(xl ,  t))3A(x2, t)12a) 

+ (2n) 3 22(OITA(x1, t)(B(x2, t))312a). 

X1 X~ 

V 
Fig 6 Kernel  for  the  b o u n d  state m one-t ime T a m m - D a n c o f f  approximat ion ,  no particle being 

dressed 

In the n = 2 approximation we neglect normal products with more than two opera- 
tors By Wick's rules and in virtue of eq (34) we then arrive at 

Eq9 = - A l q~/2m - A2qg/2rn 

d-~,l(2n)36(Xi--X2)~(Xl, X l ) - I - 2 1 ( 2 n ) 3 6 ( X l - - X 2 ) ~ 0 ( X 2 ,  X2) , (36) 

since S~(x, t ---- 0) = ½6(x) In momentum space, eq (36) reads 

E~o(Pl, P2) = (p2 + pZ)/2m + 221 f dp'dp"q~(p', p")6(p 1 + P2 - P' - P"), 

and in the c.m s ,  where tp(pl, P2) = f l (P )6 (P l  +P2), we find 

Efl (p  ) = p2f l (p) /m + 221 f dp~f(p'), (37) 

or in relative coordinates of  configuration space 

E f l ( x ) +  A f l ( x ) / m - 2 2 1 ( 2 n ) 3 6 ( x ) f l ( x )  = 0. (38) 
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This equation may  be wewed as a Schrodlnger equation with a 6 potential F r o m  
eq (37) I t  follows that  

f~ dlklk2(E-k2/m) - 1  = 1/8~2 x (39) 

In  contrast  with the exact equation (20), eq (39) does not  possess poSltlVe energy 

solutions for  the mtegrand has a pole for E > 0 In  the hmlt  (22) the solution o f  eq 
(39) is E = - B  with the binding energy B given by eq (24) The pole mentioned is 

due to the kinetic par t  o f  the A particle, the rest-energy of  which remains zero This 

is a general aspect o f  the one-time TD approx~matmn which in a modified fo rm 
(complex energies) also appears in relatlvlsnc theories As has been mentioned in 
sect 1, the lmposslbd~ty o f  obtaining positive energy solutmns is the physical con- 

sequence of  the fact that  in the one-time T D  the m~sslng relative-time correlat ion 

does not  permit the mass term m o to appear  m the approximate eigenvalue equation,  
S~(x, t l - t  2 = O) = ½6(x) is independent o f  the mass Hence, dressing effects are 
neglected 

4 3 TWO-TIME TAMM-DANCOFF APPROXIMATION 

For  the two-time T D  amplitude 

qS(xa, x2) = (OITA(xl)A(xz)12a), x, = (x~, t,), (40) 

we obtain f rom eq (33) the equation 

tO4/Otl =-Al(~/Zm+Z2a(ZTO3(OITA+(xl)A(x2)lO)(OITA(xl)A(x2)12a), (41) 

af normal  products  with more  than four  operators are neglected With q~(Pt,P2) 

= S d g x l  d Z x z ~ ) e x p ( - - l p l X l - - l p 2  X2) , we find that 

S"v(p 1)[S~v(PE)]mo = o 21 f d4p'd4P ''dp(p', p")6(pl + P2 - P' - P"), 
l 

4 (p, , v 2 )  = - 

and in the c m s ,  where qS(p~,p2 ) = 4)(p)6(px+P2)f(E-p°-p°2), we find for the 
energy E of  the bound state the equation 

[, 
a 1 a l | 4, t t -' Sv(p, - p o  +zE)[Sf(p, po +~E)]mo=O21 d d p ~p(p ), ¢ ( p )  = _ 

t ~  f d4p S"F(p, -- PO + ½E)[S~(p, Po + ½E)]mo = 0 = 1 

l e ,  

(42) 

(43) 

Integrat ion over Po yields 

f f 'd[klk 2( E - k2 /m - mo) = 1/8=21, (44) 
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which, m the hmit  (22), gives the eigenvalue 

E = m o - B ,  (45) 

which differs f rom the exact result eq (23) by the amount  o f  just one A particle mass 

Looking  at eq (42) we see that this is due to the fact that  only one o f  the A particle 
propagators  contains the mass, the other being a free one Thus the n = 2, two-time 
T D  approximat ion takes just the dressing of  one o f  the constituents of  the bound 

state into account,  the other one remaining massless Only higher approximations 

o f  the two-time T D  method furnish the missing mass of  the second particle This 

V V 
X ~ )~ 

Fig 7 Kernel for the bound state Fxg 8 Kernel for the bound Fig 9 Higher binding graph 
in two-time Tamrn-Dancoff ap- state m the Bethe-Salpeter to the Bethe-Salpeter 
prox~matlon, one particle being equation, both particles equation 

dressed being dresses 

also holds for relativistic theories I f  already in these theories the present approxama- 
t lon yields results in agreement with experiment, then in higher approxtmations not  
only the mass of  the second, not  yet dressed part,cle should increase but so also should 

the binding energy in order to compensate for the excess Such an effect is described 
by the diagram in fig 9 

4 4 ONE-TIME versus TWO-TIME TAMM-DANCOFF METHOD 

We prove here the equivalence o f  the two-time TD approximat ion with an infinite 
set of  one-time T D  equations 

Let z = t l -  t2 be the relative-time, T = ½(q + tz)  the c m s time The two-time 
T D  amplitude can be written as 

¢(xl,  x2) = ¢(T+~T, T-½~, x~, x2) = z (T ,  ~, x l ,  x2)  = z(T, ~), 

and f rom eq (41) It follows that 2 satisfies the equation 

z~Zlc?z + ½t~?zlaT = - A 1 z l 2 m  + 2(2~) 3 21 S~(x ,  z ) z ( T +  ½z, 0) 

With z(T, z) Z(z)exp = ( - t E T ) ,  we have 

tOX(v)/c~z + ½E)(.(z) = - A 1 )~/2m + 2(2r03 21 S~-(- z) exp ( - ½tET))~(O), (46) 

where the dependence on spatial coordinates has not  been exphcitly written. For  
z = 0, setting Z(0) = Z(0, x) = f z ( x )  and using S~(x ,  ~r) = 16 (x ) ,  eq (46) yields 

E f2  (x )  + A f z  ( x ) / r n -  221 (2~)36 (x)f2 (x) = - 2tf3 (x), (47) 
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where by definition 

A ( x )  = = ½ [ ( o z / a , ) , .  +o + ( O z l O , ) , o _ o ]  

Eq (47) differs from eq (38) by the term -2 t f a (x  ). Consistency reqmres that 
-2 t f3(x  ) = mof2(x), in order to reproduce eq. (44) Successive differentiation of  
eq (47) leaves us with the following system of one-time equations 

. -x  ( _  l f ( v -  1)'S.(x) 
--2~fn(x) = Efn-l(x)+ Afn-*(x)/m+ 2(2x)a21v=o £ 2 n - ~ v ' ( n - l - v )  ' 

x ( -qE) ' -~ -Ofz (x ) ,  . = 3 ,4 ,5 ,  , (48) 
where 

fn(x) = ½[(Of./&),_. + o + (t3f.laz),_+ _ o], 

So(x) = (OS"r(x, z)l&),-+o = ,v(a/m-mo)Oa(x) 

This completes the proof. 

4 5 B E T H E - S A L P E T E R  E Q U A T I O N  

The Bethe-Salpeter equation 7) for the bound state of two A particles is given by 

O(xl,  x2) -2,(2rOa21 f = d4x . . . . . .  Sv(x x - x ,  q - t  )SF(X2--X , t2--tt)l.b(X' , X'), (49) 

wath the amphtude ~(xl ,  x2) = (OlTA(xl)A(xz)j2a), which 1s the same as that m 
eq (40). The approximation made for it just characterizes the difference between the 
TD and BS methods In momentum space we have from eq (49) 

where 

0(Pa, P2) = -- - -  z2.1 S.r(pl)S.F(p2) f d4ptd.p,tO(p,, P't)S(Pl +P2-pt-p"), (50) 
7"C 

~b(p', p") = (2-~8 f d4Xld4X2t~(xl, Xz) e x p ( - t p ' x l - , p " x 2 )  

In the 
we thus arrlve at the elgenvalue equation 

2IH(E)  = 1, 
where 

H(E) = -- ~ f  d4pSaF(p, po)S~(-p,  E - p o  ) 

Integrating over p~ leaves us finally w~th 

( ) d]klk e E _ k 2 / m _ 2 m o  -1 = 1/8~21, 

c m s ,  with $(Pl ,P2)  = t~(P)f(P.+Pz)a(E--p°--P °) and p = ½(Pl-Pz)  

(51) 

(52) 

(53) 


