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Abstract An exactly soluble model field theory 1s proposed to describe physical particles on a unified
basis By starting from a direct interaction of Fermu type for particles with vanishing bare mass,
the simultaneous increase of both physical mass and binding effects, caused by the interaction,
1s made explicit Convergence of the local theory 1s assured by a resonance effect The exact
solution for the compound-particle 1s confronted with those obtained from various approxi-
mation schemes, viz one-tume and many-time Tamm-Dancoff and Bethe-Salpeter equations
The coupling of the compound-particle to its constituents 1s determined

1. Introduction

The self-interaction of a single field corresponding to bare particles with vanishing
mass should furnish these particles with non-vanishing physical mass and at the same
time give rise to binding effects between the massive particles, thus leading to the
formation of compound-particles While a rigorous formulation of this idea under-
lying several unified elementary particle theories 1) 1s still mussing, the fair agreement
of some of the calculated compound-particle masses with experimental data points
to the desirability by starting from massless particles, of making explicit the simul-
taneous increase of both particles mass and binding effects and of analysing the mean-
g and efficiency of various approximation schemes for the description of these
effects In a rigorous way these problems can only be discussed at present 1n terms
of models which are simple enough to be soluble exactly but still possess part of the
general properties and structures the realistic theories should contain A model field
theory of this type 1s proposed mn the following

In a relativistic theory of a single field A(x, t), describing particles labelled A,
coupled with 1tself through a direct Ferm1 interaction 47 A4 A, this interaction can
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be decomposed schematically mnto a binding term a* a* aa describing the binding
or scattering of two A particles (fig 1) a dressing term a*a*a*a+a*aaa which
gves rise to self-mass (fig 2) and a vacuum term a™ a* a* a* +aaaa responsible for
vacuum fluctuation processes Here, a* and a are the creation and annihilation
operators for a bare A4 particle. In what follows we shall not consider the vacuum
effects In spite of this sumplification no exact treatment of the remaining terms 1s
possible sice one cannot account for a complete iteration of the dressing term '
The essential stmplification that makes the model exactly soluble consists of replacing
the above dressing term by the expression b* b* b* a+a* bbb (fig 3) Here b* and b
are creation and annihilation operators of particles labelled B, described ?) by a new
auxiliary field B(x, t), which later will be eliminated Obviously, in virtue of the
mussing symmetry between creation and annihilation operators in the mteraction
the model becomes a non-relativistic one which, however, can be solved exactly

Fig 1 Binding and scattering Fig 2 Dressing graph Fig 3 Dressing of A particles
graph for A4 particles for A particles by B particles

Suppose now the bare 4 particles have an arbitrarily small bare mass so that their
bare rest-energy — 1n contrast with their kinetic energy — can be put equal to zero
The effect of the B particles 1s now just to dress the bare 4 particles, thereby furnishing
the latter with a positive, finite physical rest-energy, or physical mass (sect 2) Ina
non-relativistic theory there 1s no reason to identify inertial mass m with rest-mass m,
1n the energy function e(k) = (k*/2m)+m, of the particle By dressing or mass for-
mation we mean, then, the increase of the rest-mass of the particle from m, = 0 to
mg > 0, the mertial mass remaining unaltered The B field 1s now to be chosen mn
such a way that this dressing process 1s the only effect the B particles give rise to.
The B particles, then, do not mamfest themselves otherwise, that is to say, there will
be no scatterng or binding of 4 particles through intermediate B particles, and the
B particles are finally eliminated by making their bare mass infinitely large

The model thus obtained turns out to be local and finite We shall show 1n fact
how a field theory with Fermi interaction can be made finite m the local limit through
a resonance effect without the necessity of introducing ghost states The bound state
(meson) formed by two massive 4 particles (nucleons) will be calculated exactly and
will be shown to be caused entirely by the primary self-interaction of the A4 particles,
te, by the term a* a* aa, without participation of mtermediate B particles which
only turn the neutrino-like bare 4 particles into massive ones (sect 3)

In sect. 4 the exact solutions of the model are confronted with those obtained by
various approximation schemes Perturbation theory gives the exact result for the

t An attempt 1n this direction has been made by one of us %)
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single-particle problem 1n spite of the singular structure S; of the self-energy of the
A particle The bound state problem is treated in the one-time and many-time Tamm-
Dancoff approximation The absence of any relative-time correlation between the
two constituents of the bound state in the # = 2 one-time approximation prevents
the appearance of virtual clouds around both of them so that we are left with a bound
state of two massless 4 particles of negative energy On the other hand, the n = 2
two-time approximation gives a positive-energy solution, but not the exact one,
however, since the relative-tume correlation m this case accounts for the dressing of
only one of the constituents, the other remaining massless If we proceed to then = 4
approximation, this missing energy will be supplied, thus leading to the exact so-
Iution. The Bethe-Salpeter equation corresponding to the ladder diagram likewise
gives the exact result since here the relative-time correlation enters 1n a symmetrical
way so that both particles remain dressed It 1s obvious from this, that the one-time
Tamm-Dancoff method is generally less efficient than the other methods.

In sect. 5 the coupling of the compound particle to its constituents 1s determined
from the bound state propagator which 1s essentially given by the imnverse of the
Bethe-Salpeter equation In a forthcoming paper we shall demonstrate that the Fermu
theory can be considered as the limiting case of a Yukawa theory with vamshing
Z, renormahzation Although being non-relativistic, the model may be viewed as a
truncated form of a relativistic theory

2. The One-Particle Problem
The system to be considered 1s defined by the Hamiltomman

H= H0+H1, (1)
with

H, =fdx {i VA+VA—MB+B] , ()
2m

H, = (2n)*, f dxA7ATA4 +(2n)3/12fdx[B+B+B+A +A*BBB], (3)

where m and M are the kinetic and bare masses of 4 and B particles, respectively
The rest-energy of the bare 4 particle (a term —mA™ 4) has been put equal to zero
1n accordance with what has just been said and we have neglected the kinetic part
(1/2M)VB ™ VB of the B parricle by requiring M — oo The parameters 4, < 0 and
A, are real coupling constants and we include tacitly two auxiliary cutoffs X, and K,
m the terms A*A4* A4 and B*B* B* A+ A" BBB, respectively, making finally
Ki— 0, K, >0 Weseth=c=1

Both 4 and B particles are conveniently quantized according to Bose statistics
For A we have

[Ax, 0), 47 (x', D] = 6(x—x),  [alk), a” (k)] = (k—k"), @
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while for B we take an indefimte metric which, however, has no relation with the
convergence of the theory but 1s due to the non-relativistic character of the model.
In a theory in which physical and bare vacuum coincide, the physical energy of a
particle 1s always smaller than or equal to the bare energy if quantization 1s performed
with a positive defimte metric Indeed, putting a* (k)|0> = ¢[1, kD> +Y c,¢,, where
the ¢, represent scattering states, whose energies E,, for stability reasons, must be
larger than the energy of the state of one particle, we find

{OlaHa™|0) = <0laH,a™|0>+<0laH,a"|0) = <0laHa"|0) = Epe

where use has been made of the fact that {(0|aH,a*|0)> = 0, 1f the teraction 1s
written 1n terms of normal products On the other hand, expanding 1n terms of eigen-
states of the total Hamultonian, we obtamn {OlaHa*|0) = c2E+) ¢*E, Subtracting
both equalities gives c?(E~Ep,.)+ 3 ¢/ (E,— Ey,pre) = 0, which implies E £ E,,,.
This implies a quantization with indefimte metric if we msist on having a positive
physical mass for the A particle We observe that the theory 1s invariant under the
transformation 4 —» Ae”, B —» Be*"”, which entails that

n = n,+1n, =fdka+(k)a(k)+%fdkb+(k)b(k) (5)

15 a good quantum number and we have separate sectors
The commutation relations for B particles now read

[B(x, DB* (¥, )] = —5(x—x),  [b(k) b*(K)] = —o(k—K)  (6)

In momentum space, the Hamiltonian 1s given by
kZ
H = f dk [_ a* (k)a(k,— Mb +(k)b(k)]
2m
+4 f dk,  dk,a*(ky)a"(ky)a"(k3)at(ky)o(k,+ky—ky—k,)

+2, f dk,  dk,b*(k,)b*(k,)b* (ks)a(ky)+hc |6(k,—k, —k,—k3), (7

where k2 < K7 mn the term with ; and k? < K7 n the term with 1, and K, - o
at the end of all calculations

Let |0> be the bare vacuum which here coincides with the physical one H|0)> = 0.
The state of a physical A particle with momentum k can be represented by

la, k> = a*(k)|0>

+ fdk1 dk; folky , ks, k3)o(k— i k,)b* (ky)b™ (k)b * (k3)|0). (®)
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In front of |a, k) we have dropped a normalization factor Ny, which, as 1s easily seen,

tends to unity 1f, as we require, M tends to mfinity, in which case no scattering of

B particles occurs, simce then E < 3M Inserting (8) into the eigenvalue equation
Hla, k) = E|a, k),

we obtain the two equations

3
(E_3M)f0(k1 ks, ka) = ;12 l:[ @(Kg_k?)’

3 3
E— 2i K = —3'zzfdk1 dkey folky ks, ks)o(k— Y k) [] (K282, )
m 1 1

where the cutoff has explicitly been introduced through the step function @ From
eq (9) 1t follows that for £ < 3M,

E-K*]2m = 3'A3G(k)/3M—E), (10)
where

3 3
G(k) = fdkl dkso(k— Y k)] ©(K3—k2) = TKSn°+o(K3, k?)  (11)
1 1

Hence,
E—K*2m = [5KS 22n*—o(KZ, k®)])/3M —E) (12)

Let now K, - o0, M — co 1n such a way that

Im  [5K$7*/3M] = o > 0, (13)

K2 w, M-

where o 1s finile, then the energy of the physical A particle becomes

1
E=—FK+my, my=ualj>0, (14)

2m
with the positive rest-energy m, The origmally massless bare 4 particle gains this
mass through 1its interaction with virtual B particles We observe that the second

i X+ §

i

Fig 4 Self-energy part of A particles Fig 5 Scattering or binding graph
for dressed A particles

solution 3) of eq (12) when M < oo (ghost) disappears in the lmit M — oo Ob-
viously there 1s no scattering of 3 B particles (cf the appendix) In the hmut M —» o
we have f~ —1,/3M Hence, in thus it |a, k> 1s a correctly normalized state,
{a, kla, kY = 8(k—K)[1—myo(1/M)] - S(k—FK’), and |a, k) - a*(k)|0> n the
sense of strong convergence
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3. Bound-State Problem

For the bound state |2a)> of two physical A particles, satisfying the eigenvalue
equation
H|2a> = E|2a),

we make m the centre-of-mass system the ansatz
1205 = [ ak jk)a* (a*(~ k)05
3 3
+ [ Ay dhy dbs gk, Ky, i, k)oK 3 ) T B (k) (~R)0
1 1

+fdk1 .. dkgr(k,,.. ,k6)5(§k,)b+(k1) ... b*(ke)I0, (15)

which gives rise to the following system of equations
3 3
(E—K*m)f(k) = 24, f dk f(k)—3'4, f [1dk,g(k, ky, ks, K)ok~ Y k), (162)
1 1
3
[(E—3M—K*2m)g(k, ki, ky, k3)—24, f(Kk)]o(k~ ; k.)
6 3
= —S'AZJ‘dk,,dk5 dkgr(ky,. ,ke)d(D k)3(k— ) k), (16b)
1 1

(E-3My(ky,  kQH(S k) = LLo( S ko ki, ko KIS R, (160)

where the index s means symmetrization 1n all variables Substitution of (16¢) into
(16b) gives

3 3 3
(E—( ; kt)z/zm—'3M)g( ; kn kl ’ k2 s k3)—212f( ; k!)
6 3 6
= —‘5‘[}.;/(E—3'M)]J‘I;[ dkt[g( ; kn k1 s k2 H k3)6( ; kl)]s'
Taking now the limits K, — o0, M — o0 we arrive at

3 3
g( Yk ky, ky k) = =24, (Y k)/3M)+ 23 SKS/18M +o(M™1), 17
1 1

where

3 6 4 6
S = —Snzg(;kwklak2aks)_K2_6f1:[dkt[g(;kwk2’k39k4)5(;k1)+ "]’
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and thus
15 S0 Koo Koy kR
Then, from egs. (17) and (13) we have
g( ‘;“ k,ky, ks, k3) = —243 f( i k)/3M +o(1/M), (18)
and substituting this into eq (15) we find the eigenvalue equation
(E—1em)(8) = (GEIM)GER)/ () +24, [ dKF(K),

which m virtue of egs. (11) and (13) simplifies to

(E—(02fm)~2mg)1(6) = 224 [ aky#) (19
From this equation we find for the energy E of the bound state the expression
K1
f d|k|/K*(E—Kk*/m—2m,)~" = 1/8x),, (20)
0
or
m2(2my— E)* arctg [K,/(2mmo— Emg)t] = mK, +1/8n4, @1

Let us now perform the limiting processes K; — o and 4; — 0 mn such a way that

m [mK,+1/8zl,] = > 0, (22)

Ky—w, A1—0
where f§ 1s fimte Then the energy of the compound-particle 1s just given by
E = 2m,—B, (23)

with the binding energy
B = 4p*m®*n* > 0, @4

E 1s positive 1f § 1s chosen sufficiently small.
It 15 easily seen that the solutions

E = 2my—B,
f(k) = (E=K*|m—2mq)™", @25)

3 3
g(Y ks Ky, ks, k3) = 244 f( ) k)3M, g—0, r—-0 for M -
1 1
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are 1n fact the exact ones, the solution being umque 1f first the limit (13) and then the
Iimit (22) are performed Eq (25) implies that r — 0 and g — 0 as M — o Hence,
no B particles will participate in the bound state They merely furmsh the massless
A particles with rest-energy m, > 0 The binding forces are entirely caused by the
primary self-mteraction of the 4 particles This self-mteraction A, [dxA* A* A4 of
the A particles 1s different from zero 1 spite of the limiting procedure (22), 4, — 0,
since at the same time the cutoff K, mvolved m [dxA* 4" A4 tends to mfinity so
that, roughly speaking, the divergence of the product A* A" A4 of field operators
1s compensated by the vanishing of the coupling constant 4,

A simple physical argument shows the necessity of taking 1; — 0 1f K; —» o0 (eq.
(22)) to obtain finite results in the local theory (cf , also ref *)) We first note that
performing the limit X, — oo without passing stmultaneously to 4; — 0 would lead
to a divergent theory These divergencies, however, do not manifest themselves in
terms ot infinite values of observable quantities as perturbation theory and the usual
renormalization formalism would seem to indicate Iastead, they just give rise to a
free theory, e g, to vanishing cross sections, i accordance with the point of view
maimtamed by Landau and others *) on the significance of a divergent theory We
shall show tlus 1 a forthcoming paper i connection with the Z; = 0 limit of a
Yukawa theory

The vanishing of the cross section can be understood by interpreting the inter-
action between A particles as being due to a potential of range 1/K; and strength
22, (2n)*K7 (cf , eq (38)) On account of the small range of the potential (1/K; — 0)
one expects already classicially a total cross section of the order 1/KZ — 0 At first
sight one might surmise that this result could be avoided by means of an increase of
the depth of the potential, 1 e , by taking |A;| = co This, however, would not change
the classical argument since classically the total cross section depends only on the
dimension of the potential and not on 1ts depth To obtain a non-zero result we must
use an essentially quantal property, viz , the possibility of resonances inside the po-
tential To this end let us introduce a propagation vector # 1n the interior of the po-
tential

V = 24,020)%5(x) = 24,20)° K3 (26)
(cf eq (38)), viz
n = (CmE-V))E = @m(E-12;2n)*K})* 27N

The potential has the range 1/K,. Requiring that precisely one wave length be con-
tamned m the poteatial, 1 e, that 2n/np — 1/K,, we find immediately that 27K,/ — 1
together with (27) implies that 8ni,mK, — —1 The way in which the Limut
8nAd, mK, — —1 1s reached 1s precisely characterized by our constant § m (22),
B = lm[mK, +1/871,] Thus we see that the non-zero results obtained 1n the limit
(22) are due to a near-to-resonance-effect, § being a measure for the proximty to
resonance For f — 0 we have a true resonance, of course We might mention that
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1t 1s this type of effect which makes a field theory with Z, = 0 different from a free
one )

The limut (13) shows that the B particles do not manifest themselves in any real
process since an energy £ = 3M would be necessary for this to happen and M — o
Therefore, considering only processes of finite energy, the Hamiltonian H (eq (7))
1s equivalent — with respect to binding and scattering effects — to the Hamiltoman

H = f dk (i k2+m0> a*(k)a(k)

+ 4 f f[ dk,6(ky +k, — ks —ky)a" (k)a™ (ky)a(ks)d(k,) (28)

in which the effect of the B particles 1s concentrated in the mass value m, The Hamil-
tonian A’ 1s just the Hamiltonian of a direct Fermi interaction In contrast with
conventional theories, however, m, i1s not an arbitrary parameter but a well-deter-
minded quantity Simularly, the coupling of the compound-particle to its constituents
turns out to be well-determined (cf sect 5)

The bound state |2a)> for the new Hamiltonian H' 1s now given by

20> = N [ ak f(R)a* (R (~ )0, (29)
where the wave function normalization 1s

v = (2f amiseor) (30)

The eigenvalue E of the bound state
H'|2a) = E|2a)

coincides with eq (23) and f(k) with the quantity given by eq (25) Simiarly, the
one-particle solution pertaining to H’ coincides with that pertaming to H, |a, k)
= a*(k)|0> The equivalence between H and H' persists also mn higher sectors since
the limit M — oo prevents the intervention of B particles in any real process of finite
energy On the other hand, virtual B particles are always related to a term of the type
1/(E=3M) (cf eq (10)) Therefore, the only processes contributing with a non-zero
result are those in which the largest number of intermediate integrations compensates
the term 1/M 1n 1/(E—3M) by the ultraviolet factor K¢ These processes correspond
to the emussion and absorption of 3 B particles by the same A particle and thus
contribute only to the self-energy of the latter Hence, no scattering or binding of
A particles through intermediate B particles can occur The argument 1s clearly 1n-
dependent of the sector considered (for processes of finite energy)

It would of course have been a trivial matter to write down the Fermi interaction
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H’ between the massive particles from the outset But this would have given no
mdication of the origin of the mass m, The vital point 1s that m, has been generated
by the interaction which simultaneously binds the particles together while they are
getting massive

4. Approximation Schemes

We now confront the exact solutions with those furnished by various approximation
schemes The following notation will be used F = (2r) *[d*pexp (p - x) 1s the
Fourier operator, x =x,—x,, t=t,—1,, d*p=dpdpy, x=(x,), p x=x"p—1tp,,
@ the step function.

The exact B particle propagator 1s the free one since there is no dressing of B
particles through A particles Hence,

Sk(x, 1) = OIT(B(xy, t,)B"(x;, 1,))I0> = &(x)O(t) exp (—1M1), (31a)
Si(x, 1) = FSH(p, po) = F[1/(po—M +1¢)]. (31b)
The exact 4 particle propagator in the limit M — oo, K, — o0 1s given by

S§(x, t) = <O|T(A(x,, t1)A+(x2 , £2))10),
S#(x, 1) = FS(p, po) = F[1/(po—p*/2m—mo—1¢)] (32)

There are clearly no scattering states of B particles contributing (cf. the appendix).
From eq (1) we have the following equation of motion for the A4 field

1W0A[0t = — AA[2m+2(27)3 A, A* AA+ (27 A, BBB. (33)
We note that

(O|TA* A*|0> = <O|TB* B*|0> = <O|TA*B|0> = 0, (34)
since n,++n, = const. (cf, eq (5))

41 PERTURBATION APPROACH
The self-energy of a single A particle 1s given by

Y (x, 1) = 13'2;2n)°[Sp(x, O (35)

Passing to momentum space and taking account of the cutoff through the insertion
of [[}0(KX7—p2) nto the ntegral, we find

> (p) = =34 G(p)/(po—3M)

Taking the lumt (13) gives Y.(p,) = Y.(po) = my and thus we find agam the 4
particle propagator Sp(p,) = 1/(po—p*/m—X) with X = m,
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42 ONE-TIME TAMM-DANCOFF APPROXIMATION
The one-time Tamm-Dancloff amplitude ®) for the bound state |2a) 1s given by

(p(x19x29 t) = <0IT(A(X1, t)A(xZ’ t))|20>,

the T product for equal times bemg defined by the average for t = +¢,6 -0
Invariance with respect to tume translation implies that

q)(xh X2 t) = (P(x], xz) €xXp ('—lEt),

where E 1s the energy of the bound state. From the equation of motion 1t follows that
((P = (P(x1, x2))

Ep = —A902m—A4,0/2m
+22n)* 4,0|T A*(xy, DA(xy, )A(xy, 1) * A(x,, 1)]2a)
+2(2n)2 2, {0|TA(xy, t) A*(xy, )A(x5, )A(X,, 1) - |2a)
+(27)° 10| T(B(xy, 1))°A(x,, 1)I24>
+ (27)3 ,{0| TA(xy, £)(B(x,, 1))*|2a).

Fig 6 Kernel for the bound state in one-time Tamm-Dancoff approxmmation, no particle being
dressed

In the n = 2 approximation we neglect normal products with more than two opera-
tors By Wick’s rules and in virtue of eq (34) we then arrive at

Ep = —4,92m—A,0[2m
+2127)3(x, —x5)0(x1, X1) + A1 (27)° 8(x; —x,)0(x3, X3), (36)

since Sg(x, t = 0) = 16(x) In momentum space, eq (36) reads
Eq(py, p2) = (pi+p2)2m+24, f dp'dp”o(p’, P")6(p1+ P2 =P —P");
and 1n the c.m s, where ¢(p,, p,) = f1(p)5(p, + p,), we find
Efi(p) = p’fi(p)/m+24, f dp’f(p) (37)

or 1n relative coordinates of configuration space

Efi(x)+ Afy(x)/m—24,21)* 6(x)f1(x) = 0. (38)
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This equation may be viewed as a Schrodinger equation with a § potential From
eq (37) 1t follows that

f KR (E =K m)~t = 187, (39)
0

In contrast with the exact equation (20), eq (39) does not possess positive energy
solutions for the integrand has a pole for £ > 0 In the limit (22) the solution of eq
(39) 1s E = — B with the binding energy B given by eq (24) The pole mentioned 1s
due to the kinetic part of the 4 particle, the rest-energy of which remains zero This
1s a general aspect of the one-time TD approximation which in a modified form
(complex energies) also appears in relativistic theories As has been mentioned 1n
sect 1, the impossibility of obtaming positive energy solutions 1s the physical con-
sequence of the fact that in the one-time TD the missing relative-time correlation
does not permit the mass term m, to appear in the approximate eigenvalue equation,
Sp(x, t;—1, = 0) = £6(x) 1s independent of the mass Hence, dressing effects are
neglected

43 TWO-TIME TAMM-DANCOFF APPROXIMATION
For the two-time TD amplitude

¢(x1! -x2) = <0,TA(X1)A()C2)I261>, x; = (xv t;)a (40)
we obtain from eq (33) the equation
10[0t; = — Ay ¢[2m+22; (2m)*COITA™ (x,)A(x2)I0><0I TA(x,)A(x,)|2ap, (41)

if normal products with more than four operators are neglected With ¢(py, p,)
= [d*x; d®x,pexp (—ip, x;—1p, X,), we find that

l a a ! r ! rr ’ rr
¢(p1>p2) = = — SHPOLSHP2)lno=o 1t f d*p'd*p"¢(p’, p")8(ps +p2—1' —P"")

and in the cms, where ¢(py, p,) = @(p)5(p,+ p2)S(E—pl—p3), we find for the
energy E of the bound state the equation

B8 = = £ S3p. ~po + AESHP. pot 3BV ]puo [ 44P0R), (42

1e,

14 “ a
ﬁfd‘tpSF(P’ _p0+%E)[SF(p9 p0+%E)]mo=0 =1 (43)
Integration over p, yields

Ky
j d|k|k*(E—Kk*/m—mg) ™' = 1874, (44
4]
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which, 1n the limit (22), gives the eigenvalue
E = my—B, 45)

which differs from the exact result eq (23) by the amount of just one A particle mass
Looking at eq (42) we see that this 15 due to the fact that only one of the 4 particle
propagators contains the mass, the other being a free one Thus the n = 2, two-time
TD approximation takes just the dressing of one of the constituents of the bound
state 1nto account, the other one remaining massless Only higher approximations
of the two-time TD method furnish the missing mass of the second particle This

X4 Xp ><1\/x2
xl xI
Fig 7 Kernel for the bound state Fig 8 Kernel for the bound Fig 9 Higher binding graph
1 two-time Tamm-Dancoff ap- state 1n the Bethe-Salpeter to the Bethe-Salpeter
proximation, one particle being equation, both particles equation
dressed bemng dresses

also holds for relativistic theories If already in these theories the present approxima-
tion yields results in agreement with experiment, then in higher approximations not
only the mass of the second, not yet dressed particle should increase but so also should
the binding energy n order to compensate for the excess Such an effect 15 described
by the diagram in fig 9

44 ONE-TIME versus TWO-TIME TAMM-DANCOFF METHOD

We prove here the equivalence of the two-time TD approximation with an infinite
set of one-time TD equations

Let 7 = ¢, —¢, be the relative-ttme, T = L(¢;+¢,) the cms time The two-time
TD amplitude can be written as

O(xy, x2) = ¢(T+31, T—4t, x4, x3) = 2(T, 1, x4, %) = 1(T, 1),
and from eq (41) 1t follows that y satisfies the equation
10x/0t+5104/0T = — Ay x2m+2(2nr)3 A, Sp(x, D)x(T+41, 0)
With (7, 1) x(z)exp = (—1ET), we have
10y (0)[01+1Ex(x) = — A4, x2m+2(2n)> 4, Si(—1) exp (—L1ET)x(0), (46)

where the dependence on spatial coordmates has not been explicitly written. For
7 = 0, setting x(0) = x(0, x) = f5(x) and using Sg(x, 6) = 156(x), eq (46) yields

Ef2(x)+ Af(x)[m—22,21)° 5(x) f2(x) = —21f3(x), @7
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where by defimtion

F3(x) = (0x/07):=0 = H[(0%/07): +0+(0%/07)e- —0]

Eq (47) differs from eq (38) by the term —2if;(x). Consistency requires that
—2f3(x) = myfo(x), in order to reproduce eq. (44) Successive differentiation of
eq (47) leaves us with the following system of one-time equations

n—1

—2if,(x) = Ef,_(x)+Af,— 1 (x)/m+2(27)°2; ¥ (=D (v—=1)'S,(x)

v=0 2" W' (n—1-v)'

x(—%lE)"_l—bfZ(x)’ nh= 3: 49 5’ 3 (48)

where

fn(x) = %[(af‘n/ar)r-v +0 + (6f"/a1')t_, - O]a
Su(x) = (65;(;‘, T)/aT)z—»o = lv(A/m - mO)vé(x)
This completes the proof.

45 BETHE-SALPETER EQUATION
The Bethe-Salpeter equation 7) for the bound state of two A particles 15 given by

Urs ) = 200 [ EXSHy s = )K=, 1= WO, %), (49)

with the amphtude Y(x,, x,) = {0|TA(x{)A(x,)i2a), which 1s the same as that in
eq (40). The approximation made for 1t just characterizes the difference between the
TD and BS methods In momentum space we have from eq (49)

lA a 3 ! 17 ’ 1! ’ rr
¥(p1, p2) = — fSp(pl)SF(pz)fd“p d*p"Y(p’, p)o(pys+p2—p —p"), (50)

where

7 rr 1 ! rr
¥, p") = (2n)8fd4x1 d*x;¥(xy, x,) exp (=w'x1—1p"'x,)

In the cms, with ¥(py, p2) = Y(p)3(py+p2)0(E—p?—p3) and p = }(p,—p;)
we thus arrive at the eigenvalue equation

MI(E) = 1, (51)

where

1 a a
1(E) = ~ [ a*pSip, p)SH~p. E~po) (52
Integrating over py, leaves us finally with

f Kld]klkz(E—kz/m—Zmo)—l = 1/8n1,, (53)
0



